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Abstract The study of QTL · environment interaction
(QEI) is important for understanding genotype · envi-
ronment interaction (GEI) in many quantitative traits.
For modeling GEI and QEI, factorial regression (FR)
models form a powerful class of models. In FR models,
covariables (contrasts) defined on the levels of the
genotypic and/or environmental factor(s) are used to
describe main effects and interactions. In FR models for
QTL expression, considerable numbers of genotypic
covariables can occur as for each putative QTL an
additional covariable needs to be introduced. For large
numbers of genotypic and/or environmental covariables,
least square estimation breaks down and partial least
squares (PLS) estimation procedures become an attrac-
tive alternative. In this paper we develop methodology
for analyzing QEI by FR for estimating effects and
locations of QTLs and QEI and interpreting QEI in
terms of environmental variables. A randomization test
for the main effects of QTLs and QEI is presented. A
population of F2 derived F3 families was evaluated in

eight environments differing in drought stress and soil
nitrogen content and the traits yield and anthesis silking
interval (ASI) were measured. For grain yield, chro-
mosomes 1 and 10 showed significant QEI, whereas in
chromosomes 3 and 8 only main effect QTLs were
observed. For ASI, QTL main effects were observed on
chromosomes 1, 2, 6, 8, and 10, whereas QEI was
observed only on chromosome 8. The assessment of the
QEI at chromosome 1 for grain yield showed that the
QTL main effect explained 35.8% of the QTL + QEI
variability, while QEI explained 64.2%. Minimum tem-
perature during flowering time explained 77.6% of the
QEI. The QEI analysis at chromosome 10 showed that
the QTL main effect explained 59.8% of the
QTL + QEI variability, while QEI explained 40.2%.
Maximum temperature during flowering time explained
23.8% of the QEI. Results of this study show the pos-
sibilities of using FR for mapping QTL and for dis-
secting QEI in terms of environmental variables. PLS
regression is efficient in accounting for background noise
produced by other QTLs.

Introduction

Progress in molecular genetics with respect to the crea-
tion of ever more polymorphic molecular markers has
led to the common application of QTL mapping meth-
odology in genetics and breeding, and has prompted
intensive research on biostatistical methods for QTL
detection and quantification. Statistical QTL detection
and estimation approaches can be roughly grouped into
two classes: (1) regression-based methods using least
squares or generalized least squares estimation methods
and (2) mixture model-based approaches using maxi-
mum likelihood (ML) as the estimation method (Lynch
and Walsh 1998). Regression methods allow inclusion of
different experimental designs, additional treatment
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structures and are, generally, less computer-intensive
than mixture models. Early attempts to locate QTLs and
quantify their effects consisted of analysis of variance at
marker positions of phenotypic responses using geno-
typic marker classes. Equivalently, linear regression ap-
proaches were developed that transformed marker
information into predictors, after which putative QTL
effects were estimated by regressing the phenotypic re-
sponses on those genetic predictors. For example, for a
codominant marker system, three classes of genotypes
can be defined as MM, Mm, and mm, which can be
transformed into a genetic predictor for additive genetic
effects, x, with the value 1 when the marker genotype is
MM, while for marker genotype Mm this genetic pre-
dictor takes the value 0, and finally, for marker genotype
mm the value of the genetic predictor would be �1.
Similarly, genetic predictors for dominance genetic
effects can have the value 0 for the marker genotypes
MM and mm, while the heterozygote Mm receives the
value 1 (Haley and Knott 1992).

With marker regression, the effect of the QTL is
typically underestimated (see p. 437 in Lynch and Walsh
1998). An improvement on marker regression constructs
additional, virtual genetic predictors in between the
observed markers. The values for such virtual genetic
predictors are constructed as functions of the genotypes
at the left and right flanking markers, and the distance of
the virtual genetic predictor to these markers (Haley and
Knott 1992; Jiang and Zeng 1997). This approach is
known under the name of simple interval mapping
(SIM), and was originally introduced as an ML method
(Lander and Botstein 1989), until Haley and Knott
(1992) presented a regression alternative.

Provided the marker distance is not too large
(<20 cM), results from ML-based SIM and regression-
based SIM correspond well (Haley and Knott 1992;
Martinez and Curnow 1992). With a large number of
missing data or wide gaps in the marker linkage map,
discrepancies between the two methods can occur. The
SIM method represents an advance over analysis of
variance or regression at marker positions, but it is
based on an often unrealistic genetic model of a single
QTL influencing the phenotypic trait, while ignoring the
effects of additional QTLs on the same or other chro-
mosomes. The latter issue is addressed by an extension
of SIM called composite interval mapping (CIM). CIM
combines interval mapping for a single QTL in a given
interval with a correction for QTL effects elsewhere in
the genome. In the multiple regression approach, QTL
effects elsewhere are accounted for by a set of genetic
predictors close to or at the positions where QTLs have
been found or are suspected. CIM has greater power for
QTL detection and higher precision for QTL localiza-
tion and estimation relative to SIM (Zeng 1994). The
idea is that the cofactors reduce, as much as possible, the
background noise created by other QTLs in the genome.
Haley and Knott (1992), Caliński et al. (2000), and
Hackett et al. (2001) presented methods based on uni-
variate and multivariate regression for CIM. Sari-Gorla

et al. (1997) proposed a weighted least squares approach
coupled with a sequentially rejective Bonferroni method,
while a forward selection procedure was used to select a
subset of genetic predictors to be used as cofactors.

An important difficulty in using CIM is the appro-
priate selection of a cofactor set, since the number and
chromosome positions of genetic predictors in this set
greatly affect the final outcome. When using regression
subset selection procedures (forward selection, back-
ward elimination, or stepwise), the number of selected
cofactors depends on the chosen significance levels for
inclusion or exclusion of cofactors. For example, with
a=0.05 for inclusion, a large number of cofactors will be
selected. Conversely, for a=0.01, some important co-
factors may not be included. Another point to notice in
CIM is that as the number of markers increases, the map
becomes denser and measures for dealing with multi-
collinearity among cofactors become increasingly rele-
vant. Typically, QTL model strategies will not survey all
possible subsets of cofactors and will provide insufficient
protection against collinearity between genetic predic-
tors that are closely linked. When cofactors show high
collinearity, interpretation of least squares regression
coefficients is complicated, if not erroneous, because the
coefficients are estimated very imprecisely and tend to
be too large in absolute value (see section 8.3 in
Montgomery and Peck 1982). A stepwise procedure for
selection of cofactors might alleviate some of the
collinearity problems, but will still survey only some of
the possible subsets. Alternatively, all subset approaches
will fail in the presence of the large number of genetic
predictors that need to be included in the regression
models, as the number of predictors will exceed the
number of observations. Alternative estimation methods
like partial least squares (PLS) (this paper) or principal
components regression (Hwang and Nettleton 2003) will
be useful in such conditions.

When mapping QTLs, the phenotypic evaluation of
the same segregating population across multiple envi-
ronments creates the need for statistical models that
allow the modeling and interpretation of QTL by envi-
ronment interaction (QEI), the differential expression of
QTLs in relation to changing environmental conditions.
The study of QEI is not only of importance by itself, but
also, and maybe even more so, because of the relation-
ship between QEI and the phenotypic phenomenon of
genotype · environment interaction (GEI), the depen-
dence of phenotypic differences among genotypes on the
environment. Standard statistical models for GEI
implicitly model the GEI as the summed result of all
QTLs and QEI involved in the production of a specific
phenotypic trait (Crossa 1990; Van Eeuwijk et al. 1996),
without considering the possibility that different regions
of the genome, i.e., QTLs, can have their specific re-
sponses to environmental conditions. Models for QEI
and GEI can be synthesized within the context of the
factorial regression (FR) framework, where phenotypic
responses as observed across a set of environments are
modeled on genotypic and environmental covariables.
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The use of FR models in GEI problems was described
by Denis (1988, 1991) and Van Eeuwijk et al. (1996). In
its simplest form, FR is equivalent to the inclusion of
genotypic and environmental contrasts (covariables) on
the levels of the genotypic and environmental factors for
two-way genotype · environment tables. In the presence
of large numbers of genotypic and/or environmental
covariables, least squares estimation procedures break
down. PLS estimation procedures have been shown to
provide a good alternative for such situations (Aastveit
and Martens 1986; Helland 1988; Talbot and Wheel-
wright 1989; Vargas et al. 1998, 1999).

In important maize-growing areas of the world, grain
yield reduction is caused by drought during flowering
time as well as low nitrogen content of the soil. Drought
causes a delay in silking, an increase in the anthesis sil-
king interval (ASI), and therefore a decrease in grain
yield. Thus, under drought stress, selection for small ASI
in tropical maize should be correlated with grain yield
improvement and ASI becomes an important secondary
trait with relatively high heritability and more stability
than grain yield. Nevertheless, few studies have been
conducted on mapping QTLs responsible for the
expression of morphological traits under abiotic stresses
such as field drought and low-nitrogen conditions.
Ribaut et al. (1996) found stable QTLs for ASI across
several water regimes (including severe stress and well-
watered conditions) on chromosomes 1, 2, 4, 5, 8, 9, and
10, using F2 derived F3 families from a cross between a
drought-tolerant and -susceptible parent. For the same
F2 derived F3 families, Ribaut et al. (1997) reported
QTLs for grain yield and yield components under well-
watered and severe drought stress conditions. Stable
QTLs were found on chromosomes 1 and 10.

In this paper, we further develop the statistical ap-
proaches described by Crossa et al. (1999) and Van
Eeuwijk et al. (2000, 2002) for modeling QTLs and QEI
to analyze the population of F2 derived F3 families
introduced above. The data set combines phenotypic
evaluations across eight environments differing in the
level of drought stress and soil nitrogen content (Ribaut
et al. 1996, 1997). The main objectives of this research
were to demonstrate the use of (1) FR for estimating
effects and locations of QTL and QEI; (2) FR for
modeling and interpreting QEI in terms of products of
genetic predictors and environmental variables (the
factor environment is characterized and replaced by its
related environmental covariables and the factor geno-
type is characterized and replaced by genetic predictors);
(3) a randomization test for the main effects of QTLs
and QEI (additive and dominance genetic effects), con-
trolling the genome-wise error rate; (4) PLS for the
simultaneous correction for additive and dominance
effects of QTLs and QEI in other parts of the genome
outside the evaluated chromosome, thereby avoiding the
selection of cofactors, while appropriately dealing with
collinearity between markers; and (5) interpret the
pattern of QTLs and QEI for both yield and ASI in a
maize population derived from a cross between a

drought-tolerant and -susceptible parent, where this
population was evaluated across a range of environ-
ments differing in water and nitrogen availability.

Method for mapping QTL and QEI

Background

Crossa et al. (1999) developed a FR model for QEI in
tropical maize, generalizing a FR model for GEI. Ge-
netic predictors derived from marker genotypes were
introduced in a FR model as genetic covariables, and
combined with various environmental covariables that
were derived from meteorological records for each of
three development stages. The authors found genetic
predictors at marker positions associated with biomass
that exhibited significant QEI. Using a FR model in
combination with a stepwise variable selection proce-
dure, the QEI was partitioned in cross products of ge-
netic predictors (=marker scores) and environmental
covariables. The influence of specific environmental co-
variables (such as maximum or minimum temperature,
precipitation, etc.) on QTL expression was quantified. A
PLS approach gave similar results to the application of a
FR model on a least squares basis. An advantage of PLS
was the reduction of the dimensionality of the GEI and
QEI, allowing a low dimensional graphical representa-
tion of the GEI and QEI.

Van Eeuwijk et al. (2000, 2002) extended the FR
models for GEI and QEI developed by Crossa et al.
(1999) from the original marker-based regressions to
interval mapping and composite interval mapping. The
authors presented (1) a randomization test for control-
ling the genome-wise error rate, following the logic
introduced by Churchill and Doerge (1994) and (2) a
PLS strategy to deal with the problem of multicollin-
earity among multiple cofactors. The PLS strategy
consisted of (1) taking all the markers outside the
chromosome being evaluated as cofactors, (2) regressing
the phenotypic responses on this set of markers using
multivariate PLS, (3) calculating the fitted values for the
phenotypic responses, and (4) using the corrected phe-
notypic observations, i.e., the residuals from the PLS
regression, in a SIM procedure for the chromosome
being evaluated. Note that the marker and QTL infor-
mation on the chromosome under evaluation should be
approximately independent of the marker and QTL
information on other chromosomes. The situation is
comparable to that for an analysis of an experiment laid
out in a randomized complete blocks design, where we
would first fit the complete blocks, i.e., fit a regression on
the qualitative variable ‘‘block’’, and then carry on to
work with the residuals of the regression on those
complete blocks. Therefore, the PLS correction for
background genetic signals on other chromosomes will
not induce correlations in the corrected phenotypic
observations of step (4), nor will it complicate or even
invalidate inference.
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The characteristics of PLS regression allows correct-
ing for all cofactors outside the evaluation window,
without having to select a subset of cofactors. Further-
more, the PLS strategy allows the use of moderate
population sizes, markers with heavy collinearity, and
deals with the natural noise in the quantitative trait to be
mapped. Van Eeuwijk et al. (2002) illustrated this ap-
proach for yield in maize focusing on chromosome 1.
The data in that paper covered eight environments and a
population of 211 F2 derived F3 lines. Recently,
Bjornstad et al. (2004a, b) used PLS to identify QTLs
and concluded that PLS gave similar results as other
QTL mapping procedures, with the advantage of not
having to choose a cofactor set.

Two-way fixed effect analysis of variance

As the start for our modeling strategy, we take the
conventional fixed effects two-way analysis of variance
model with sum to zero constraints running over indices.
In this model, the adjusted mean response, �yij; of the ith
genotype (i=1, 2, ..., G) in the jth environment (j=1, 2,
..., E) with n replications for each of the GEI cells is
expressed as �yij ¼ lþ Gi þ Ej þ ðGEIÞij þ �eij: Here l is
the grand mean over all genotypes and environments, Gi

is the additive effect of the ith genotype, Ej is the addi-
tive effect of the jth environment, (GEI)ij is the non-
additivity or interaction of the ith genotype in the jth
environment, and �eij is the average error, assumed to be
NID (0, r2/n) (where r2 is the within-environment error
variance, assumed to be constant).

FR model for the analysis and detection
of QTL and QEI

The FR model is an extension of the two-way analysis of
variance model. In the FR model, the main effects of
genotypes (G), environments (E), and the GEI are
modeled in relation to genotypic and environmental
covariables. For theory and illustrations of possible
partitioning of G, E, and GEI effects, see Van Eeuwijk
et al. (1996). The FR framework is also suitable for the
mapping of QTL main effects and QEI. Van Eeuwijk
et al. (2000, 2002) describe how genetic predictors can be
constructed from marker information that allows the
detection and estimation of additive and dominance
QTL effects with or without QEI. Some relevant details
of their approach follow.

In FR, genotypic covariables, xa (a =1, 2, ..., A) with
values xia, can be introduced for the genotypic main
effect, Gi: Gi=xia qa + (residual)i, where qa is the
regression coefficient for the regression of Gi on xa. For
more than one genotypic covariable this becomes
Gi ¼ RA

a¼1xiaqa þ ðresidualÞi: When the genotypic co-
variable xa is replaced by genetic predictors xq, the FR
framework can also be used for a genome scan for QTL
effects. The genetic predictors then should represent
linear transformations of the expected QTL genotypes

along the genome, as first explained by Haley and Knott
(1992) in their seminal paper on a regression approach
toward QTL mapping. In a multiple QTL model, the
genotypic main effect is replaced by a sum of regression
terms Gi ¼ RQ

q¼1xiqqq þ ðresidualÞi; where qq is the qth
QTL main effect. When genetic predictors are calculated
at marker positions only, the FR approach reduces to
marker regression. For interval mapping and composite
interval mapping, genetic predictors in between marker
positions need to be constructed as well. Explicit
expressions for calculating genetic predictors for differ-
ent types of segregating populations, and for dominant
and codominant markers, as well as for imputing miss-
ing markers, can be found in Haley and Knott (1992),
Jiang and Zeng (1997), and Lynch and Walsh (1998).

Analogous to the genotypic main effect in FR, the
environmental main effect, Ej, also can be regressed on
covariables, in this case environmental covariables, zb
with, values zjb. The corresponding partitioning is
Ej ¼ zjbbb þ ðresidualÞj; for one environmental covari-
able, or, Ej ¼

PB
b¼1 zjbbb þ ðresidualÞj; for multiple

environmental covariables. The parameters bb represent
the regression coefficients of the regression of the envi-
ronmental main effect on the environmental covariables.

For the GEI in FR models, three types of partiti-
onings are possible. Firstly, genotypic covariables are
measured and environmental coefficients (potentialities)
then need to be estimated, xiaqja. Secondly, environ-
mental covariables are measured and genotypic coeffi-
cients (sensitivities) need to be estimated, zjbbib. Finally,
both genotypic and environmental covariables are
measured and only a scaling constant needs to be
estimated, xiazjbmab. FR models may describe GEI
by one or more terms of the above types. An exam-
ple of a partitioning of GEI in terms of cross products
of genotypic and environmental covariables is
ðGEIÞij ¼ RA

a¼1R
B
b¼1 xiazjbmab þ ðresidualÞij; with mab as a

constant that scales the cross product of the genotypic
covariables, xa, with the environmental covariables, zb.
Each cross product represents one degree of freedom in
the GEI subspace. A model for GEI consisting of a
series of one degree of freedom cross products will be
shown below to be very appropriate for the modeling
of QEI.

Within a QTL analysis by FR, a multiple QEI
model follows easily from models for GEI:
ðGEIÞij ¼ RQ

q¼1xiqqjq þ ðresidualÞij; where qjq represents
a QEI effect, i.e., differential QTL expression in relation
to the main effect QTL expression, for the qth QTL in
environment j. QEI for a QTL q¢ can be further modeled
by regressing it on an environmental covariable,
zb: ðGEIÞij ¼ xiq0zjbmq0b þ ðresidualÞij: For multiple
QTLs, this generalizes to ðGEIÞij ¼ RQ

q¼1R
B
b¼1xiqzjbmqb

þðresidualÞij:
Testing one or more QTL main effects can be done

by comparing the model �yij ¼ lþ RQ
q¼1xiqqq þ Ejþ

(residual)ij with the model �yij ¼ lþ Ej þ (residual)ij:
When main effect QTL expression and QEI areconsid-
ered together, this is equivalent to fitting different
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QTLs for each environment. Testing multiple QTLs
with different effects for each environment, is done by
fitting the model �yij ¼ lþ RQ

q¼1xiqqjq þ Ejþ (residual)ij
and comparing it with the model �yij ¼ lþ Ejþ
(residual)ij. A specific test for QEI compares

�yij ¼ lþ RQ
q¼1xiqqqþ Ej þ RQ

q¼1xiqqjq þ (residual)ij with

�yij ¼ lþ RQ
q¼1xiqqq þ Ej þ(residual)ij: F-tests can be

constructed from ratios of regression mean squares to
independent error terms. In this study the error term
used was computed as the median of the individual trial
error terms. Since tests are performed at every position
in the genome, the genome-wise error rate must be
controlled. As the tests at nearby positions will be cor-
related, it is difficult to control the genome-wise error
rate by Bonferroni corrections. Therefore, we elaborated
a testing procedure based on randomization.

Randomization test

The strategy proposed by Van Eeuwijk et al. (2000,
2002) was inspired by the Churchill and Doerge (1994)
method of randomization of the response vector for
controlling Type I error in QTL detection. It also uses
ideas from Manly (1997) on the randomization tests for
two-way analysis of variance and multiple regression.

The approach consists of computing, first, for all
evaluation positions at the chromosome under study, the
F statistics (or, equivalently, a LOD score or R2) for the
QTL main effect, QEI, and QTL + QEI (=QTL with
different effect in each environment). The distribution of
the statistic for testing the null hypothesis of no QTL, no
QEI, and no QTL + QEI is obtained from random-
izations of the set of vectors of genetic predictors per
progeny (F2, RIL, backcross, etc.) with respect to the set
of vectors of phenotypic observations across environ-
ments. This means that the genetic predictor values for a
progeny family are kept together, just as with the phe-
notypic observations. However, the coupling of genetic
predictor values and phenotypic values is random, so
that the genetic predictor values for one family are
joined with the phenotypic observations for another
family. Per randomization, the maximum value of the
test-statistic over the chromosome under study is stored.
After 1,000 randomizations, the distribution of the test-
statistic can be constructed from the realized values in
the randomization. For QTL testing purposes, the 95th
and/or 99th quantiles can then be taken to perform tests
at a test level of 0.05 or 0.01 genome-wise, respectively.
The F-values computed on the original, non-randomized
data are then compared with the threshold values
obtained from the randomization distribution.

Correcting for QTLs at other chromosomes using PLS

Correction for genetic effects (QTLs) outside the evalu-
ation chromosome can be achieved by application of a

multivariate PLS regression (Aastveit and Martens 1986;
Helland 1988) of the vectors of phenotypic observations
across environments on vectors of genetic predictors,
where the latter correspond to the complete set of
markers on all chromosomes except the evaluation
chromosome. For example, for chromosome 1, the set of
genetic predictors in the PLS regression will involve all
markers on the chromosomes 2–10. The genetic predic-
tors include both additive and dominance effects, and
these effects are allowed to depend on the environment.
The residuals from the PLS regressions are subsequently
analyzed for QTLs by a SIM procedure, in the expec-
tation that the effects of QTLs on other chromosomes
were removed by the PLS regression.

This PLS approach avoids the complex construction
of a set of cofactors and it is also supposed to deal
adequately with the collinearity problem among genetic
predictors (markers). The appropriate rank of the matrix
of genetic predictors can be assessed by cross validation
(Osten 1988). The randomization tests for QTL detec-
tion should be performed on the phenotypic data
adjusted for the QTLs elsewhere.

Plant material and genetic mapping

Details of the phenotypic and genetic data analyzed in
this study using the approach described above can be
found in Ribaut et al. (1996, 1997). Phenotypic data were
collected on a set of 211 F2:3 families derived by selfing
F2 plants. The two parental lines crossed to obtain this
population were P1, Ac7643S5, derived from Population
43 (La Posta), and P2, Ac7729/TZSRWS5, from Popu-
lation 29 (Tuxpeño Caribe). The drought-tolerant inbred
line was parent P1, which had a short ASI and performs
well under drought, whereas parent P2 was the drought-
susceptible. Segregating families were evaluated under
eight environments during 1992, 1994, and 1996 under
‘‘optimal’’, water-limited, and low-nitrogen conditions.
For each experiment, environmental variables such as
solar radiation, minimum and maximum temperatures,
precipitation, and sun hours were recorded during three
development stages of the crop: vegetative (before
flowering), flowering, and grain filling period. In this
study, we did the QTL and QEI mapping for grain yield
(GY) and ASI (measured as the difference in days be-
tween pollen shed and silk emergence). Table 1 gives a
brief description of the experiments with their means for
the two target traits GY and ASI.

The genetic predictors were calculated according to
Jiang and Zeng (1997). A total of 132 RFLP markers
distributed along the entire maize genome were used
(Ribaut et al. 1996). The FRs were done every 3.33 cM
and at the markers. At each position, the amount of
variability accounted for by the putative QTL and QEI
was calculated and expressed as a percent of the total
variation due to G and GEI. We followed the same
approach to calculate the percentage of variation
accounted for by the main effect of QTL, RQTL

2 , the QEI,
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RQEI
2 , and the variation due to fitting QTL in each

environment, RQTL+QEI
2 .

Results

Mapping additive and dominant QTLs for grain yield

To illustrate the new methodological approach pre-
sented in this paper, we discuss results of QTL for grain
yield and ASI measured across several environments.
These traits were selected among a broad set of traits as
a grain yield increase represents the final objective of
most breeding efforts conducted at CIMMYT, while
ASI is a key secondary trait for maize improvement
under both water-limited and low-nitrogen stress con-
ditions. A QTL in a chromosome region was considered
to be environment specific if both terms QTL + QEI
and QEI were significant. On the other hand, when
QTL + QEI was significant but the QEI was not, then it
was concluded that this QTL has an expression only
through its main effect. As confidence intervals for QTL
location easily reach 20 cM, we treated QTLs within
20 cM as constituting the same QTL. For grain yield
and ASI we followed the idea that a QTL was consid-
ered environment-specific when both tests for
QTL + QEI and QEI were significant. Alternatively, a
QTL had a main effect expression when QTL + QEI
was significant, but QEI was not.

For grain yield, Fig. 1a–f depict the profile of RQTL
2 ,

RQEI
2 , and RQTL+QEI

2 and the corresponding critical
values for a=0.01 based on 1,000 randomizations.
Between 105 and 180 cM of chromosome 1 (Fig. 1a) and
between 45 and 90 cM of chromosome 10 (Fig. 1f) there
are good reasons to believe that there are environment-
specific QTLs (the QTL + QEI and the QEI effects
were both significant). On the contrary, in the regions
between 20 and 50 cM of chromosome 3 (Fig. 1b) and
between 60 and 100 cM of chromosome 8 (Fig. 1d) only
main effect QTLs were observed. QEI at the end of
chromosome 4 (Fig. 1c) and near the end at chromo-
some 9 (Fig. 1e) was ignored because those QEI peaks
did not coincide with the corresponding peaks for
QTL + QEI. At chromosome 4 a significant dominance
main effect QTL was also found (not shown in Fig. 1).

The results of the QTLs found for grain yield are
summarized in Table 2, where the sign of the QTL effect
is positive when yield was increased by the allele coming
from the drought-tolerant parent, P1, and negative
when the yield increasing allele came from the drought-
susceptible parent, P2. Thus, for the additive main effect
of QTLs on chromosomes 1, 3, 9, and 10, the positive
allele came from the susceptible parent, whereas for the
QTLs on chromosomes 4 (for both additivity and
dominance) and 8, the positive allele came from the
drought-tolerant parent (P1). For comparison, Table 2
also shows results of Ribaut et al. (1997) for some
low-nitrogen and drought environments.

Mapping additive and dominant QTLs for ASI

Several QTLs have been identified for ASI. Figure 2a–f
shows, for ASI, the profile of RQTL

2 , RQEI
2 , and

RQTL+QEI
2 and the corresponding critical values for

a=0.01 based on 1,000 randomizations. Main effect
QTLs with additive genetic effects were found on chro-
mosomes 1, 2, 6, 8, and 10. In addition, on chromosome
1 a main effect QTL effect was detected for dominance.
Significant QEI was observed at the end of chromosome
6 (Fig. 2d) and at the end of chromosome 8 (Fig. 2e).
The QEI on chromosome 6 will not be considered
further, because the peak of the QEI did not coincide
with that of the QTL + QEI.

Table 3 summarizes location and effects of the ASI
QTLs. The additive main effects of the QTLs on chro-
mosomes 1 (for dominance), 2, 6, 8, and 10 follow the
direction of the drought-tolerant parent (P1) that de-
creases the ASI. Only the QTL on chromosome 1, with
an additive genetic effect, made the ASI wider and came
from the susceptible parent (P2). Results from Ribaut
et al. (1997) are included for comparison.

Interpreting QTL · E for grain yield

In this section we concentrate on positions between 105
and 180 cM of chromosome 1 (Fig. 1a) and between 45
and 90 cM of chromosome 10 (Fig. 1f), where QEI
effects for yield were significant. The analysis of variance

Table 1 Trial code, year of the trial, time of sowing, levels of nitrogen and drought, and average grain yield and ASI

Trial code Year Sowing Nitrogen Drought stress Mean yield (ton ha�1) ASI (days)

NS92a 1992 Winter Normal No 10.5 -1.6
IS92a 1992 Winter Normal Intermediate 6.4 -1.0
SS92a 1992 Winter Normal Severe 3.7 -0.9
IS94a 1994 Winter Normal Intermediate 4.2 1.8
SS94a 1994 Winter Normal Severe 4.1 1.9
LN96a 1996 Winter Low No 1.8 2.9
LN96b 1996 Summer Low No 1.0 3.3
HN96b 1996 Summer High No 4.9 -1.1

NS no drought stress, IS Intermediate drought stress, SS severe drought stress, LN low nitrogen, HN high nitrogen, ASI anthesis silking
interval
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table at position 140 cM of chromosome 1 is given in
Table 4. The first part of Table 4 (first five rows) shows
the usual analysis of variance for a two-way table of
grain yield measured in 211 genotypes (F2 derived F3

families) evaluated in eight different environments (E)
with the partitioning of the joint effect of G + GEI into
G and GEI effects. Most of the variability is due to E,
followed by the GEI effects, which is highly significant

Fig. 1 Profile of R2 for the additive effects of QTL (Solid lines), QEI
(dotted lines), and QTL + QEI (broken lines) on grain yield for (a)
chromosome 1 (additive); (b) chromosome 3 (additive); (c) chromo-
some 4 (additive); (d) chromosome 8 (additive); (e) chromosome 9

(additive); (f) chromosome 10 (additive).Horizontal lines from top to
bottom represent the critical values of QTL + QEI, QTL and QEI,
respectively, after 1,000 randomizations (a=0.01). Numbers on the
QTL profile indicate marker positions
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when tested against an error obtained from analyzing
the individual trials. The middle part of Table 4 (rows 6–
10) shows the variability due to QTL + QEI effects in
other parts of the genome than chromosome 1 (i.e., due
to QTLs on chromosomes 2–10), the variability due to
G + GEI after correction for the QTLs on the other
chromosomes, and the corresponding partitioning into
G and GEI components. Approximately 28.8% of the
original G + GEI was associated with QTLs on other
chromosomes. (The degrees of freedom for G and GEI
could have been adjusted for the corrections at the other
chromosomes, but this was not done as it would not
have any observable influence on subsequent parts of the
analyses.) The last part of Table 4 shows the partition-
ing of the G + GEI adjusted for the QTLs on chro-
momosome 2–10 into variation due to QTL + QEI at
position 140 cM of chromosome 1 and deviations from
the QTL model. The eight environment-dependent
QTLs do not seem to be responsible for a major amount
of variation, QTL + QEI variability explained only
6.7% of the G + GEI variability (153.775/2287.0623) in
yield. QEI dominated the QTL main effect, when com-
paring the sums of squares, the QTL main effect ex-
plained 35.8% of the QTL + QEI variability, while
QEI explained 64.2%.

Differences in QTL expression for the additive genetic
effect at position 140 cM of chromosome 1 across the
eight environments were clarified by studying the effect
for the QTL and QEI (Table 5). Effects of allele sub-
stitutions varied between �0.234 and �0.721 ton ha�1

for the drought stress trials carried out during 1992 and
1994. The QTL effect in the low-nitrogen experiment of
1996 was effectively zero (�0.019 ton ha�1), while under
high-nitrogen conditions in that year it produced a grain
yield increase of 0.424 ton ha�1. The average additive
effect (QTL main effects) of an allele substitution across
all the trials was a yield decrease (�0.273 ton ha�1)
(Table 5). QEI effects were negative (or negligible)
for drought trials in 1992 and 1994 (�0.310,
�0.263, �0.448, �0.258, 0.039 ton ha�1) and positive

for nitrogen trials conducted in 1996 (0.289, 0.254,
0.697 ton ha�1).

The environmental covariable that explained the QEI
best, 77.6%, was minimum temperature during flower-
ing time (Table 4). The effect of this environmental co-
variable was highly significant by an F-test for the
regression mean square over the error obtained from the
analysis of individual trials (F=76.675/0.75=102.23,
P<0.001). The QTL allele coming from parent P1, the
drought-tolerant parent, raised yield by 0.065 ton ha�1

for each degree Celsius that the minimum temperature at
flowering time increased (Table 5). For genotypes that
are homozygous at this QTL, the increase doubled. In
the fifth column of Table 5, the fitted values of the FR
for QEI are expressed as the product of the regression
coefficient (0.065) and the value for the minimum tem-
perature during flowering in degree Celsius given as
deviation from the overall temperature mean (across the
eight environments). Thus, the relative effect of the
minimum temperature at flowering of QEI in each
environment for grain yield is visualized through the
sign and magnitude of the product. The highest negative
effect was in the severe water stress in 1992 (SS92a)
environment and the highest positive effect was observed
in the low-nitrogen environment in 1996 (LN96b)
(Table 5). This model did not fit equally well for each
environment, as can be seen in the last column of
Table 5, where the residual QEI effects are given.

The complete analysis for grain yield QTLs at posi-
tion 63 cM of chromosome 10 is shown in Table 6. The
first part of Table 6 (first five rows) is analogous to that
of Table 4. The middle part of Table 6 (rows 6–10)
shows the variability of QTL + QEI effects due to ge-
netic predictors at chromosomes 1–9 as well as the
remaining G + GEI variability. Approximately 31.4%
of the original variability of the grain yield due to
G + GEI was associated with the QTLs on the other
chromosomes. The QTL + QEI variability explained
only 4.3% of the adjusted G + GEI variability (93.87/
2203.99). The QTL main effect explained 59.8% of the

Table 2 Number of chromosomes with QTLs showing additive (Add.) or dominance (Dom.) genetic effects for grain yield, position (cM),
and R2 (data adjusted for the effect of two PLS terms)

Chromosome 1 Add. 2 Add. 3 Add. 4 Add. 4 Dom. 6 Add. 7 Add. 8 Add. 9 Add. 10 Add.

Position (cM) 140 40 143 73 80 73 63
R2 7.02 3.10 3.65 2.92 1.91 3.79 4.26
Additivitya �0.27 �0.27 0.26 0.38 0.23 -0.29 �0.27
Directionb P2 P2 P1 P1 P1 P2 P2
NS92ac (cM) 168 86 134 48
IS94ac (cM) 154, 229 14 74 59
SS94ac (cM) 82 114 57 60
IS94a + SS94ac (cM) 82, 156 57 73 61
LNa + LNb + HNbd (cM) 104, 234 96 42, 173 59, 119 58, 123 67 60

QTLs reported by Ribaut et al. (1997) are shown for comparison
aAdditive effects are associated with the allele from the tolerant line (P1). A positive value means that the P1 allele increases the numeric
value of grain yield
bDirection indicates the parental line which contributes to the increase of the numeric value of the trait
cRibaut et al. (1997). NS no drought stress, IS Intermediate drought stress, SS severe drought stress, 1992 cycle a, 1994 cycle a
dLNa low nitrogen 1996 cycle a, LNb low nitrogen 1996 cycle b, HN high nitrogen 1996 cycle b
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QTL + QEI variability, while QEI explained 40.2%
(Table 6).

For the QTL at 63 cM on chromosome 10, the allele
coming from the drought-tolerant parent, P1, reduced
grain yield in all trials carried out during 1992, 1994, and
1996 (Table 7). The average additive effect of an allele
substitution (the QTL main effect) produced a yield

decrease of 0.278 ton ha�1 (Table 7). When the QEI ef-
fects were regressed on the set of environmental covari-
ables, maximum temperature at flowering showed the
closest relation with these interaction effects, although
only 23.8% of the QEI was explained by this regression.
The F-test produced significance at a test level of 0.05
(P=0.0134). The effect of the environment-specific

Fig. 2 Profile of R2 for the effects of QTL (Solid lines), QEI (dotted
lines), and QTL + QEI (broken lines) on ASI for (a) chromosome
1 (additive); (b) chromosome 1 (dominance); (c) chromosome 2
(additive); (d) chromosome 6 (additive); (e) chromosome 8 (addi-

tive); (f) chromosome 10 (additive). Horizontal lines from top to
bottom represent the critical values of QTL + QEI, QTL and QEI,
respectively, after 1,000 randomizations (a=0.01). Numbers on the
QTL profile indicate marker positions
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QTL effects (QEI) is described as a decrease in grain yield
of 0.064 ton ha�1 for each degree (Celsius) that the
maximum temperature at flowering stage increased.

Interpreting QTL · E for ASI

A significant QEI was found for ASI at position 133 cM
of chromosome 8. From the variability explained by
G + GEI, 28.4% is associated with QTLs at other
chromosomes. The QTL + QEI variability explained
only 2.2% of the adjusted G + GEI variability (75.69/
3458.52). The QEI effect dominated the QTL + QEI

effect, when comparing the sums of squares. The QTL
main effect explained 20.7% of the QTL + QEI vari-
ability, whereas QEI explained 79.3% of the QTL + QEI
(data not shown). For the QTL main effect, the allele
coming from the drought-tolerant parent (P1) reduced the
length of ASI. The average additive effect of an allele
substitution (the QTL main effect) produced an average
decrease in ASI of 0.157 days. When the QEI effects were
regressed on the set of environmental covariables, pre-
cipitation at flowering showed the closest relation with the
QEI effects and explained 38% of the QEI. The effect of
this environmental covariable was significant
(P=0.0025). The effect of the environment-specific QTL

Table 3 Number of chromosomes with QTLs showing additive (Add.) or dominance (Dom.) genetic effects for ASI, position (cM), and R2

(data adjusted for the effect of one PLS term)

Chromosome 1 Add. 1 Dom. 2 Add. 5 Add. 6 Add. 7 Add. 8 Add. 10 Add.

Position (cM) 210 80 137 78 72 60
R2 6.27 3.45 4.35 6.37 3.73 5.10
Additivitya (days) 0.55 �0.55 �0.45 �0.53 �0.35 �0.48
Directionb P2 P1 P1 P1 P1 P1
NS92ac (cM) 201 138 90 61
IS94ac (cM) 203 134 147 76 76 101
SS94ac (cM) 206 130 147 79 75 43
LNa + LNb + HNbd (cM) 81, 208 90 71, 116 95 69, 124 45

QTLs reported by Ribaut et al. (1996) are shown for comparison
aAdditive effects are associated with the allele from the susceptible line (P2). A positive value means that the P2 allele increases the numeric
value of ASI
bDirection indicates the parental line which contributes to the increase of the numeric value of the trait
cRibaut et al. (1996). NS no drought stress, IS Intermediate drought stress, SS severe drought stress, 1992 cycle a, 1994 cycle a
dLNa low nitrogen 1996 cycle a, LNb low nitrogen 1996 cycle b, HN high nitrogen 1996 cycle b

Table 4 Partitioning of yield
variation at position 140 cM of
chromosome 1

For comparison, an error
estimated as the median of the
individual trial error was 0.75
*For the correction of the grain
yield data due to genetic effects
on chromosomes 2–10, degrees
of freedom might be discounted
(see text)
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effects (QEI) can be described as an average decrease in
ASI of 0.002 days for the increase of 1 mm precipitation
during the flowering stage.

Discussion

Comparing the QTLs found in this study for grain yield
with those reported by Ribaut et al. (1997) for the
NS92a, IS94a, and SS94a environments and for
IS94a + SS94a and LN96a + LN96b + HN96b
combined analysis, the presence of some common QTLs

on almost all of the chromosomes can be observed.
Some of them were located practically at the same
positions and others were located at different positions,
probably due to the different compositions of the sets of
environments used in the various studies, in combina-
tion with differences in the applied QTL methodology
(Table 2). The most stable QTLs were that found on
chromosome 10 between 45 and 90 cM (with the peak at
63 cM) and that found by Ribaut et al. (1997) in 48, 59,
60, 61, and 60 cM of chromosome 10 in environments
NS92a, IS94a, SS94a, IS94a + SS94a, and
LN96a + LN96b+HN96b, respectively (Table 2 and

Table 6 Partitioning of yield
variation at position 63 cM on
chromosome 10

For comparison, an error
estimated as the median of the
individual trial error was 0.75
*For the correction of the grain
yield data due to genetic effects
on chromosomes 1 through 9,
degrees of freedom might be
discounted (see text)

Table 5 QTL effects, QTL main effect, QEI effects for grain yield per environment for position 140 cM of chromosome 1

Trial code QTL per environment QTL + QEI model Factorial regression on minimum temperature during
flowering for QEI

QTL effect QTL main effect QEI effect Fit regression on min. temp. flow.a ResidualQEI

NS92a �0.583 �0.273 �0.310 0.065·�2.88 -0.123
IS92a �0.536 �0.273 �0.263 0.065·�3.76 0.019
SS92a �0.721 �0.273 �0.448 0.065·4.76 -0.138
IS94a �0.531 �0.273 �0.258 0.065·�3.08 -0.058
SS94a �0.234 �0.273 0.039 0.065·�2.98 0.232
LN96a 0.158 -0.273 0.289 0.065·1.26 0.207
LN96b �0.019 �0.273 0.254 0.065·8.12 -0.274
HN96b 0.424 -0.273 0.697 0.065·8.09 0.172
Standard error 0.132 0.037 0.105 0.0073b 0.102

Regression of QEI effect on minimum (min.) temperature (temp.) during flowering (flow.) using factorial regression
aThe fit for the factorial regression model for QEI is expressed as the product of the regression coefficient and the value for the minimum
temperature during flowering in degree Celsius, the latter given as the deviation from the mean for that temperature (across the eight
environments)
bStandard error of slope
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Fig. 4). For chromosome 1, a significant region for yield
was found between 105 and 180 cM (with a peak at
140 cM) (Table 2), whereas Ribaut et al. (1997) found

QTLs at different places of chromosome 1 between 82
and 234 cM, depending on the environment where the
progenies were evaluated (Table 2 and Fig. 3).

For ASI the number and positions of the QTLs found
in this study agreed very well with those identified by
Ribaut et al. (1996) (Table 3 and Figs. 3, 4), indicating
that QTLs for ASI are stable across the different envi-
ronments. Contrary to the case of grain yield, for ASI
the main effect of QTL at different chromosomes
showed a more stable behavior. Only for the additive
QTL on chromosome 1, the allele from P2, the suscep-
tible line, produced an increase in ASI, whereas, as ex-
pected, P1 alleles reduced ASI for all other significant
QTLs (Table 3). The sign of the additivity was consis-
tent for all ASI QTLs across the eight environments.
The significant QEI for ASI found in chromosome 8 was
well explained by precipitation during flowering stage.

The above results indicate that QTLs for grain yield
are less stable than those identified for ASI, as they are
more affected by different environmental conditions.
The location and the effects of the QTLs for grain yield
reported by Ribaut et al. (1997) and the present study
vary depending with the nature of the stress used in the
trial. The most important consequence of drought stress
is a decrease in yield and an increase in GEI (Blum
1988). Thus, as pointed out by Ribaut et al. (1997),
inconsistencies in the identification of QTLs for grain
yield performance across well-watered and drought
environments are expected. However, we also expect to
find stable QTLs across varying water regimes due to the
spillover effects of yield potential. It is likely to find
genotypes performing well under well-watered condi-
tions and under drought, even if the relative yield
reduction is large (Edmeades et al. 2001). Beavis (1994)
mentioned that the inconsistency of grain yield
QTLs across environments can be explained by the fact
that yield is under the control of a large number of
small-effect QTLs that segregate in the genome.

Concerning the interpretation of QEI for grain
yield occurring in chromosomes 1 and 10, in terms of
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Fig. 3 Positions of additive and dominant QTL + QEI effects for
grain yield and ASI for chromosomes 1 and 4. Along the left-hand
side are the positions of the QTLs found in this study; in red are the
QTLs for grain yield (A-YIELD, D-YIELD, with A for additive
genetic effects and D for dominance) and in green the QTLs for ASI
(A-ASI and D-ASI). The intervals for the QTLs show the region
for which the test statistic was significant. Along the right-hand side
are the positions of the QTLs found by Ribaut et al. (1996, 1997);
red denotes the QTLs for grain yield identified by specific trials and
the underlined green italic identifies the trials where the QTLs for
ASI were found

Table 7 QTL effects, QTL main effect, QEI effects for grain yield per environment for position 63 cM of chromosome 10

Trial code QTL per environment QTL + QEI model Factorial regression on maximum temperature during
flowering for QEI

QTL effect QTL main effect QEI Fit regression on max. temp. flow.a Residual QEI

NS92a �0.355 �0.278 �0.077 �0.064·0.608 �0.038
IS92a �0.393 �0.278 �0.115 �0.064·0.087 �0.109
SS92a �0.034 �0.278 0.244 -0.064·�0.873 0.188
IS94a �0.237 �0.278 0.041 -0.064·1.358 0.129
SS94a �0.339 �0.278 �0.062 �0.064·0.997 0.003
LN96a �0.068 �0.278 0.210 -0.064·�4.213 �0.061
LN96b �0.041 �0.278 0.237 -0.064·0.837 0.291
HN96b �0.757 �0.278 �0.479 �0.064·1.197 �0.402
Standard error 0.037 0.106 0.023b 0.110

Regression of QEI effect on maximum (max.) temperature (temp.) during flowering (flow.) using factorial regression
aThe fit for the factorial regression model for QEI is expressed as the product of the regression coefficient and the value for the maximum
temperature during flowering in degree Celsius, the latter given as the deviation from the mean for that temperature (across the eight
environments)
bStandard error of slope

1020



environmental variables it is clear that temperatures
during the flowering stage were the most important
factors affecting QEI. Because of the highly polygenic
nature of grain yield and large transgressive segregation,
the contribution of favorable alleles was relatively
balanced between the two parental lines. P2 contributed
to an increase of yield at QTLs on chromosomes 1, 3, 9,
and 10, while P1 increased yield at QTLs on chromo-
some 4 (additivity and dominance) and 8 (Table 2). In
maize, drought during flowering produces a delay in
silking, and thus an increase in the QTL for ASI on
chromosome 1 from parent P2 (Ribaut et al. 1996; Hall
et al. 1982; Westgate and Bassetti 1990; Bolaños and
Edmeades 1993).

It is interesting that there is no evidence of closely
linked or pleiotropic additive genetic QTLs for grain
yield and ASI on chromosome 1 (Fig. 3). Similarly,
there is no evidence for joint additive and dominance
genetic effects at the QTLs for ASI on chromosome 1.
There is one QTL with an additive effect on grain yield
on chromosome 4 (Fig. 3) at 143 cM and another one
with a dominance effect at 73 cM, whereas there is no
evidence of QTLs for ASI on this chromosome. On
chromosomes 8 and 10, QTLs for grain yield and ASI
coincide closely with respect to location. Chromosome 8
had an additive QTL for grain yield (at 80 cM) and one
for ASI (at 72 cM); chromosome 10 had an additive
QTL for grain yield at 63 cM and an additive QTL for
ASI at 60 cM (Fig. 4).

Apart from the understanding of the genetic com-
plexity of a target trait, the major output of a QTL
analysis is the identification of suitable genomic regions
to be included in a marker-assisted selection (MAS)
breeding program. Currently, the major limitation of a
MAS program is the ‘‘instability’’ of QTL expression
across environments and across genetic backgrounds
(Ribaut and Hoisington 1998). As demonstrated
through studies, there is real gain in accelerating
breeding activities using molecular markers as a com-
plementary tool (Morris et al. 2003), but few practical
examples have been reported so far. The likely reason
for the latter observation is that QTLs of complex traits
such as grain yield explain only small amounts of the
phenotypic variation, so that it can be expected that
predictions based on those models do not perform very
well. Therefore, QEI estimation, as presented in this
paper, represents a key step forward toward the identi-
fication of target genomic regions for MAS experiments.
As discussed, QTL identified for ASI were consistent
across the eight environment trials. This result is very
relevant for MAS purposes because it indicates that by
pyramiding favorable alleles for ASI at significant loci
identified in this study, we can expect to achieve genetic
gain within the P1 · P2 genetic background across a
broad set of environments including optimal and
limited-water conditions and low-nitrogen conditions.
For grain yield, a much larger QEI than for ASI has
been observed. However, a couple of QTLs have been
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consistently identified across environments that might be
considered for inclusion in a MAS experiment.

The challenge for a MAS program is to predict which
genotypes have alleles that will rank them as elite, and
take advantage of existing genetic information generated
through different genomics approaches without having
to map QTLs in new crosses (a very time-consuming and
expensive activity). This type of MAS, based on con-
sensus regions, is already being tested at CIMMYT
(Ribaut et al. 2004). In this context, the identification of
QTL that are ‘‘stable’’ across environments represents a
key element of success, and thus the QEI characteriza-
tion, by assessing which environmental factors affect the
QTL stability (such as maximum and minimum tem-
perature during flowering found in this study) allows us,
to a certain extent, to make predictions of genetic effects
in new environments with comparable climatological
patterns.

In conclusion, results of this study show the possi-
bilities of using FR for mapping QTL and for dissecting
QEI in terms of environmental variables affecting cer-
tain QTLs. Furthermore, PLS regression proved to be a
convenient tool for canceling background noise pro-
duced by other QTLs. The FR model framework with a
randomization test for controlling the genome-wise
error rate in conjunction with the use of the PLS for
dealing with the problem of multicollinearity among
cofactors and adjusting for all the markers outside the
chromosome being evaluated, seems to be a useful
strategy for mapping QTLs with additive and domi-
nance effects and studying QEI in terms of external
environmental variables. At present, we are working at
extending the FR framework for GEI and QEI in the
direction of mixed models in order to have more flexi-
bility in modeling heterogeneity of genetic variance
across environments and variations in genetic correla-
tions between environments, which we currently had to
ignore. A publication on a mixed model analysis of the
QEI for the maize data used in this paper is in prepa-
ration.
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